

29th 태성에스엔이 CAE Conference

Introduction to Multiscale Analysis and Examples related to PCB

Koji Yamamoto

Hyojun Ha

CYBERNET SYSTEMS CO., LTD.

Taesung S&E

CONTENTS

- 1. Background
- 2. Multiscale Analysis
- 3. Analysis Examples
- 4. Summary

29th 태성에스엔이 CAE Conference

Occurrence factor of warpage in PCB

29th 태성에스엔이 CAE Conference

PCB made by Multi Material

29th 태성에스엔이 CAE Conference

Under fill

PCB is constructed by many kinds of <u>composite materials</u>

Need an-isotropic material constants for CAE analysis

Wiring, Via etc.

Solder bump

Base material (FR4)

Conductive adhesive(Epoxy & Filler etc.)

Oppressive Material Test

29th 태성에스엔이 CAE Conference

Reference) National Institute for Materials Science <u>https://www.nims.go.jp/publicity/digital/movie/mov150916.html</u>

Analysis for Material Constants Identification

29th 태성에스엔이 CAE Conference

- Analysis approach to identify material constants
- > Dumbbell specimen model : Reverse identification by calibration
- > Unit cell model : Evaluated definitively from analysis results

Calibration

Analysis by dumbbell specimen

Analysis by unit cell specimen

Characteristics	Dumbbell specimen	Unit Cell specimen	
Cost for model creation	\bigcirc	riangle (Tends to get large)	
Boundary conditions	\bigcirc	riangle(complex)	
Consistent with actual tests	\bigcirc	\bigtriangleup	had
Executable deformation modes	\times (limited)	\bigcirc	\triangle : medium
Executable identification of all constants	\triangle (limited)	\bigcirc	⊖:good

Material Constants for an isotropic property

29th 태성에스엔이 CAE Conference

29th 태성에스엔이 CAE Conference

Introduction of Multiscale Analysis

Homogenization analysis using Multiscale.Sim

29th 태성에스엔이 CAE Conference

What is Multiscale.Sim?

Add in tool to homogenization analysis on ANSYS Workbench

🎁 Multiscale.Sim

Templates for Micro Model Creation

29th 태성에스엔이 CAE Conference

Representative microstructure which can be made by Multiscale.Sim

Homogenization analysis using Multiscale.Sim

29th 태성에스엔이 CAE Conference

What is Multiscale.Sim?

Add in tool to homogenization analysis on ANSYS Workbench

Material Designer vs. Multiscale.Sim

3 R R 9 × 2 Select Change Constituen Analysis /ariable Exit Mesh Geometry Undate Materials RV/E Mode MD M Edit 🕞 RVE Type Undate Outline ■ RVE モデル (UD) Materials Geometry Mesh ✓ Settings Analyses 白 🖌 不変材料評価 効果 Structure Layers Selection Groups Views Outline Options - Constant material solve General Material name: 65

Material Designer released from 2019 (SpaceClaim GUI)

Multiscale.Sim released from 2007 (Mechanical GUI) Homogenization analysis tool is made by broadly two features which are model creation and homogenization analysis.

Feature comparison between two tools (as of Aug. 28, 2019)

Features		Material Designer	Multiscale.Sim
GUI		SpaceClaim	Mechanical
Micro model creation		5 types	17 types (Design Modeler)
License to use		ANSYS Mechanical Enterprise	Multiscale.Sim
Linear Homogenization	Elasticity	\checkmark	\checkmark
	Thermal expans.	\checkmark	\checkmark
	Integrated section		\checkmark
	Thermal conduct.	\checkmark	\checkmark
	Seepage coeff.		\checkmark
	Permeability for Electric and Magnetic		√
Nonlinear Homogenization	NonlinearNext slidesomogenizationfor detail		\checkmark
Localization			\checkmark

29th 태성에스엔이 CAE Conference

Supported Material Behavior in Multiscale.Sim

29th 태성에스엔이 CAE Conference

Nonlinear homogenization features

- > Numerical Material testing
- Any deformation mode
- Any loading history
- Curve fitting
- Original optimization algorithm (Tuned for each material models)

Operational Demonstration1

29th 태성에스엔이 CAE Conference

Purpose

Identification equivalent material constants for

- Orthotropic elasticity
- Coefficient of thermal expansion
- Density

Analysis Model

- SiC matrix & Aluminum filler
- Spherical filler dispersed in SiC
- Material Type
 - SiC : Pure Elastic
 - Aluminum : Pure Elastic
- Operational Procedure
 - Create Analysis System
 - Creating microstructure
 - Assigning material properties & Meshing
 - Insert linear homogenization objects
 - Confirmation results

Operational Demonstration2

29th 태성에스엔이 CAE Conference

Homogenization analysis in SPDM system (SPDM : <u>Simulation Process and Data Management</u>)

- Demerit
- Duplication of data
- Lack of unity (spelling inconsistency)
- Different information although same name
- Unknown source

Operational Demonstration2

29th 태성에스엔이 CAE Conference

29th 태성에스엔이 CAE Conference

How to prepare material constants for input data

29th 태성에스엔이 CAE Conference

Reference) S. Tsuchida, N. Hirayama, Y. Ishibashi, K. Yamamoto, K. Terada, Identification of orthotropic elastic constants for carbon fiber, Composite Symposium in Japan (2018)

How to prepare material constants for input data

29th 태성에스엔이 CAE Conference

Identify

 $E_{\rm L}^{\rm f}$

 $G_{\mathrm{LT}}^{\mathrm{f}}$ $G_{\mathrm{TZ}}^{\mathrm{f}}$

 $\nu_{\mathrm{LT}}^{\mathrm{f}}$

 $u_{\mathrm{TZ}}^{\mathrm{f}}$

NNW

学習済NNW

Props.	Unit	Data	NNW	Error rate [%]
$E_{ m L}^{ m f}$	GPa	237.5	239.1	0.67
$E_{\mathrm{T}}^{\mathrm{f}}$	GPa	16.5	16.90	2.30
$G_{ m LT}^{ m f}$	GPa	9.5	9.40	1.05
$ u_{ m LT}^{ m f}$	-	0.33	0.33	0.00
$ u_{\mathrm{TZ}}^{\mathrm{f}}$	-	0.50	0.51	2.00

Reference) S. Tsuchida, N. Hirayama, Y. Ishibashi, K. Yamamoto, K. Terada, Identification of orthotropic elastic constants for carbon fiber, Composite Symp osium in Japan (2018)

Elasticity homogenization for woven CFRP

29th 태성에스엔이 CAE Conference

* Courtesy of Shimadzu corporation

FR4 (Glass fiber and Epoxy)

29th 태성에스엔이 CAE Conference

- ➤ Grass cross used PCB and so on
- Evaluate elasticity and thermal expansion

material constants

Young modulus[GPa] Thermal expantion coeff.[ppm/K]

Courtesy of NITTO BOSEKI Co., Ltd.

Filler dispersed composite

29th 태성에스엔이 CAE Conference

Sealing resin

Material property is controlled by fillers

- ➤ Model
- SiC filler + Epoxy resin
- Spherical filler
- Consider size distribution
- ➤ Homogenization
- Elastic

Conductive adhesive

Add Ag filler in matrix in order to achieve high conductivity

- ➤ Modeling
- Ag filler + Epoxy resin
- Complex filler's shape
- Create by image base technique (Delete small parts)
- ➤ Homogenization
- Elasto Plastic

Semiconductor Package

29th 태성에스엔이 CAE Conference

≻ Model

Considering Cu wiring structure under the bump.

➢ Purpose

Analyze the effect of wiring structure on the strain in bump.

Estimate anisotropic material constants at three point and replace homogenized model.

0.06

Summary

29th 태성에스엔이 CAE Conference

PCB is multi material product <u>made by many composite</u>. It is important to prepare it's an-isotropic material constants.

Multiscale analysis approach based on homogenization technique is quite effective.

Difficulties of real experiments

Making all deformation modes for identification of an-isotropic properties Taking a long time to perform.

Homogenization analysis solution

- ≻Micro Model Creation
 - Many templates to create model automatically

Numerical Material Test

Available for any deformation modes and loading history

≻Curve fitting

Robust optimization algorithm to identify material constants

Good Material Database Leads Good Analysis

29th 태성에스엔이 CAE Conference

Simple examples for creep homogenization

29th 태성에스엔이 CAE Conference

: Type4 Direct Model

1000 2000 3000 4000 5000 6000

Time [sec.]

Multiscale creep analysis for lattice structure

- Creep homogenization analysis
- Virtual test for 6 modes
- xx,yy,zz uniaxial modes
- xy,yz,xz pure shearing modes
- ➤ Curve fitting
- PSO optimization
- Macroscopic constitutive law
- Time hardening & Hill's potential

$$\begin{split} \dot{\varepsilon}_{\rm cr} &= \mathcal{C}_1 \sigma_{\rm Hill}^{\mathcal{C}_2} t^{\mathcal{C}_3} \exp\left(-\frac{\mathcal{C}_4}{T}\right) \\ \sigma_{\rm Hill} &= \left\{ F \left(\sigma_{\rm yy} - \sigma_{\rm zz}\right)^2 \right. \\ &+ G \left(\sigma_{\rm zz} - \sigma_{\rm xx}\right)^2 + H \left(\sigma_{\rm xx} - \sigma_{\rm yy}\right)^2 \\ &+ 2N \tau_{\rm xy}^2 + 2L \tau_{\rm yz}^2 + 2M \tau_{\rm xz}^2 \right\}^{1/2} \end{split}$$

Macro scale analysis

- Direct model is used for validation
- Good correlation between 2 model.

Faster 2300 times

0.000

Homogenization for non-cyclic symmetry microstructure 29th Eldondello CAE Conference

Trace Mapping vs. Homogenization

29th 태성에스엔이 CAE Conference

29th 태성에스엔이 CAE Conference

- Material property
- Board : homogenized anisotropic CTE at 9 regions
- UF : visco elastic property of UF
- ≻Real experiment
- DIC technique

 $\alpha 1 \alpha 2$

X direction (ppm/°C)					
6	a	b		С	
18.7	14.8	15.4	13.2	17.5	11.6
(d e		f		
15.4	13.2	15.3	17.6	17.2	14.8
Ę	3	h		i	
14.0	12.8	17.2	12.4	17.6	12.8

Y direction (ppm/°C)						
а		b		С		
18.5	12.8	16.0	11.2	16.1	11.2	
(d		е		f	
17.8	12.8	16.6	18.8	16.8	14.8	
Ę	g h			i		
170	120	172	132	154	204	